On Orbit Closures of Symmetric Subgroups in Flag Varieties

نویسنده

  • MICHEL BRION
چکیده

We study K-orbits in G/P where G is a complex connected reductive group, P ⊆ G is a parabolic subgroup, and K ⊆ G is the fixed point subgroup of an involutive automorphism θ. Generalizing work of Springer, we parametrize the (finite) orbit set K\G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of θ-stable (resp. θ-split) parabolic subgroups. We also describe the decomposition of any (K, P)double coset in G into (K, B)-double cosets, where B ⊆ P is a Borel subgroup. Finally, for certain K-orbit closures X ⊆ G/B, and for any homogeneous line bundle L on G/B having nonzero global sections, we show that the restriction map resX : H0(G/B,L) → H0(X,L) is surjective and that Hi(X,L) = 0 for i ≥ 1. Moreover, we describe the K-module H0(X,L). This gives information on the restriction to K of the simple G-module H0(G/B,L). Our construction is a geometric analogue of Vogan and Sepanski’s approach to extremal K-types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Orbit Closures of Spherical Subgroups in Flag Varieties

Let F be the ag variety of a complex semi-simple group G, let H be an algebraic subgroup of G acting on F with nitely many orbits, and let V be an H-orbit closure in F. Expanding the cohomology class of V in the basis of Schubert classes deenes a union V 0 of Schubert varieties in F with positive multiplicities. If G is simply-laced, we show that these multiplicites are equal to the same power ...

متن کامل

Lectures on the geometry of flag varieties

In these notes, we present some fundamental results concerning flag varieties and their Schubert varieties. By a flag variety, we mean a complex projective algebraic variety X, homogeneous under a complex linear algebraic group. The orbits of a Borel subgroup form a stratification of X into Schubert cells. These are isomorphic to affine spaces; their closures in X are the Schubert varieties, ge...

متن کامل

Combinatorics Related to Orbit Closures of Symmetric Subgroups in Flag Varieties

Let G be a connected reductive group over an algebraically closed field k of characteristic not 2; let θ ∈ Aut(G) be an involution and K = Gθ ⊆ G the fixed point group of θ and let P ⊆ G be a parabolic subgroup. The set K\G/P of (K , P)-double cosets in G plays an important role in the study of Harish Chandra modules. In [BH00] we gave a description of the orbits of symmetric subgroups in a fla...

متن کامل

On Orbit Closures of Symmetric Subgroups in Ag Varieties

Introduction Let G be a connected reductive group over an algebraically closed eld k; let B G be a Borel subgroup and K G a closed subgroup. Assume that K is a spherical subgroup of G, that is, the number of K-orbits in the ag variety G=B is nite; equivalently, the set KnG=B of (K; B)-double cosets in G is nite. Then the following problems arise naturally.

متن کامل

Poisson Structures on Affine Spaces and Flag Varieties

The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999